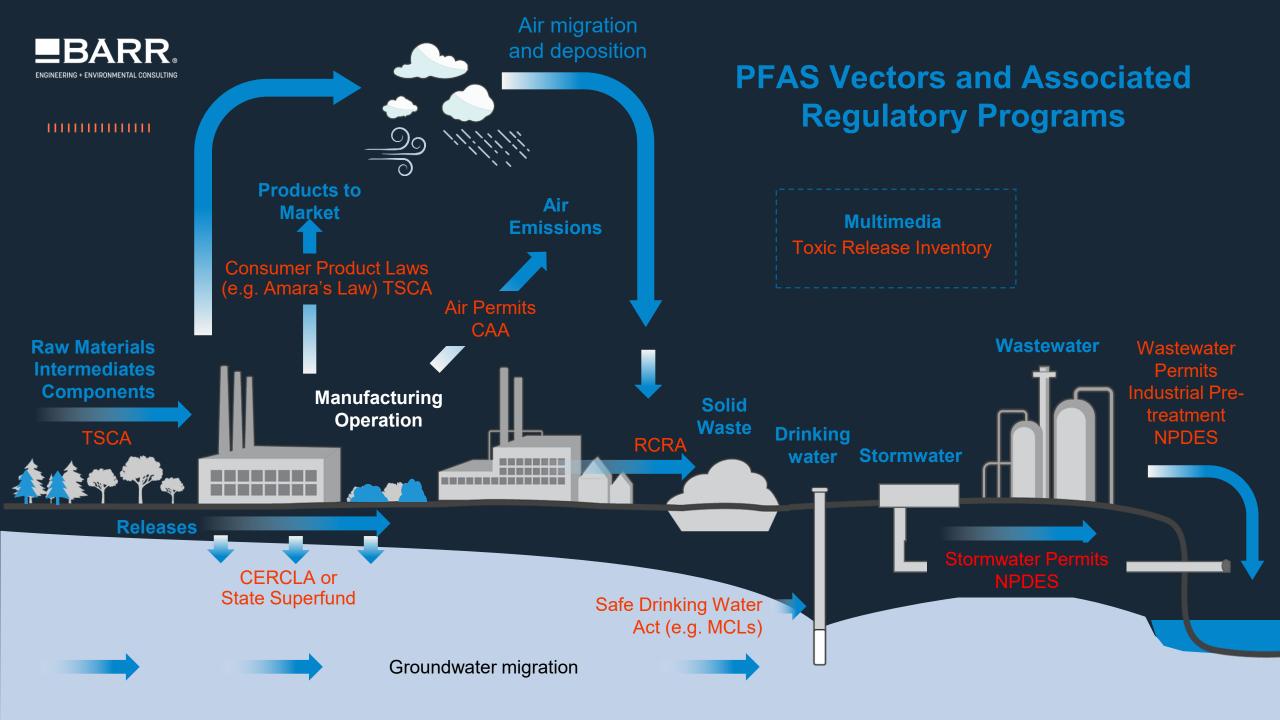

PFAS Destruction: The Role of Gasification in Addressing Forever Chemicals in Biosolids


Content

What you can expect in this presentation

- Challenges in Biosolids Disposal and Treatment
- Gasification's Role in PFAS Destruction
- PFAS Study Results

Linden Biosolids Processing Facility

Aries Flagship Project

Overview

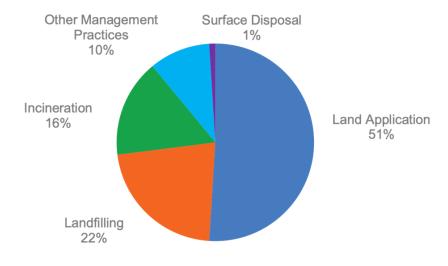
- ✓ Located < 20 miles from mid-town Manhattan</p>
- √ ~30 skilled, full-time employees
- Thermal energy produced accounts for 100% of thermal needs offsetting natural gas use
- No combustion due to controlled oxygen
- Gasifier and dryer have achieved integrated operations
- Thousands of tons of cake processed

CHALLENGES IN BIOSOLIDS DISPOSAL AND TREATMENT

The Biosolids Problem

Biosolids restrictions are driving up tipping fees

- Biosolids are the solid material recovered from the wastewater treatment process
- Over 1 million dry tons¹ of biosolids are produced everyday worldwide regardless of economic, environmental, or societal conditions
- Biosolids must be disposed of in a timely manner, and current options are under intense regulatory pressure
- As disposal options diminish cost of disposal is increasing



Current Biosolids Disposal Methods

Biosolids restrictions mean disposal options are rapidly diminishing

- Ocean dumping was banned in 1988, leading to landfilling, incineration, and land application as disposal options
- Landfills disposal of biosolids is decreasing due to capacity restrictions, land availability, and public opposition
- Incineration is becoming less prevalent due to stricter environmental regulations
- Land application is being restricted and increasingly regulated as due to contamination from PFAS and other chemicals of concern

Biosolids and PFAS

PFAS concerns are gaining mainstream attention

Sewage often becomes fertilizer, but the issue is it's tainted with PFAS

Bloomberg Law

PFAS in Sewage Sludge, Industrial Wastewater Targeted for Rules

★ THE TEXAS TRIBUNE

Texas farmers say sewage-based fertilizer tainted with "forever chemicals" poisoned their land and killed their livestock

POLITICO

Farmers sue EPA over 'forever chemicals' in fertilizer

The New York Times

Sludge Contaminated 10,000 Acres of Farmland. What Should Be Done?

For years a textile mill gave farmers its sewage sludge as free fertilizer. Today the land is full of "forever chemicals."

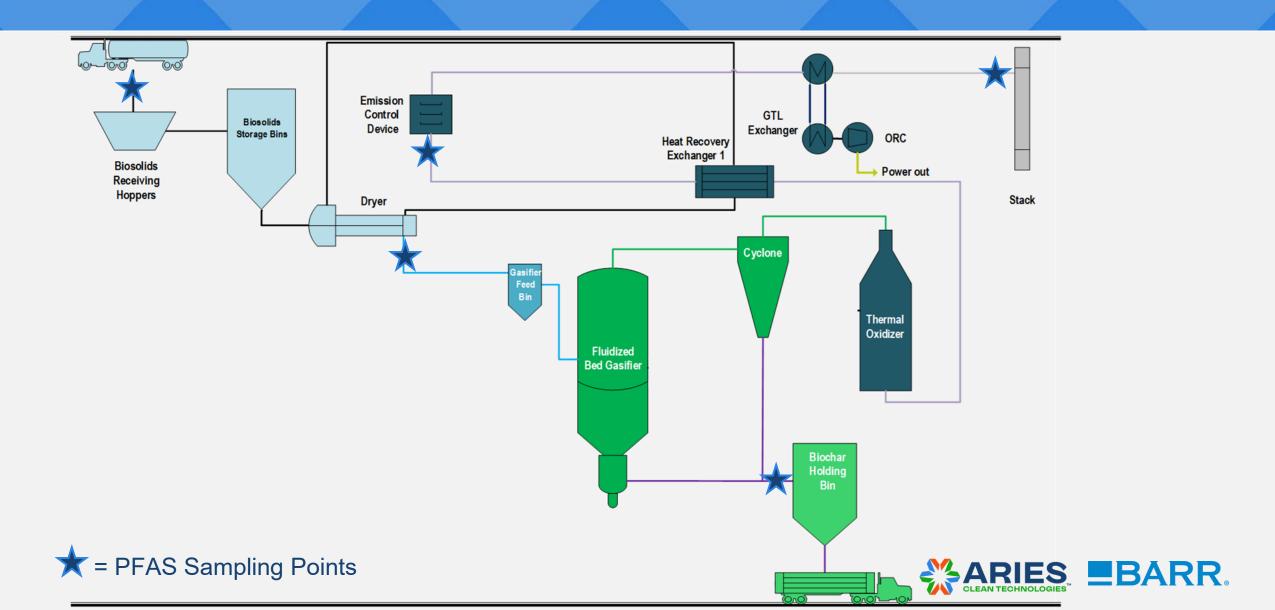
THE WALL STREET JOURNAL.

New York City's Sewage Shipment Runs Afoul in Rural South

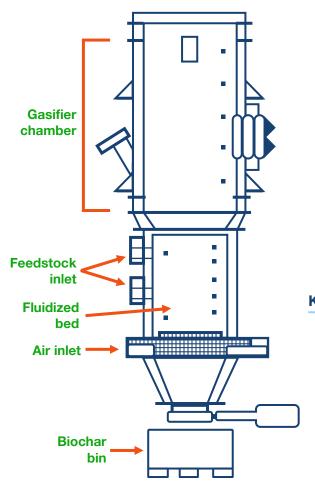
Alabamans want human-waste deliveries to local landfill to stop; 'We didn't produce it. We don't want it here.'

'They told us that this material would be safe.' Toxic PFAS discovered on US farms

Legal action could end use of toxic sewage sludge on US crops as fertilizer


Sewer Sludge Is Dangerous to Health, EPA Says of Biosolids and PFAS

GASIFICATION'S ROLE IN PFAS DESTRUCTION


Aries Process Flow Diagram

Patented fluidized bed gasification technology

Fluidized bed gasifier

Gasifier benefits

Patented technology

System can cleanly reduce biosolids by as much as 95% through a proprietary patented thermochemical process

Key patent information

Aries gasifier is protected by US patents governing both the downdraft and fluidized bed gasification technologies

Beneficial byproducts

Clean energy syngas, a synthetic

fuel gas for industrial use and **Bio-Fly-Ash**, which has industrial and manufactured product applications

Financial benefits

Energy production is used to offset current costs, as well as adding additional monetary value of using renewable power

Sustainability benefits

Reducing carbon footprints through achieving zero landfill and/or land application goals for industry and municipalities

Patents were filed under the Patent Cooperation Treaty and have global reach Most patents expire in 2033 but can be extended adding claims under methods

PFAS Destruction via Gasification

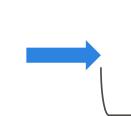
Aries patented process operates at temperatures high enough to break down PFAS

Drying Unit (200°F)

- Removes excess moisture from biosolids and prepares the biosolids for gasification
- Product leaves dryers at around 10% moisture content

Gasifier (1250°F)

- Liberates and decomposes PFAS compounds with stronger chemical bonds from biosolids at 1,250F
- By-products are syngas and biochar


Thermal Oxidizer (1800°F)

- Decomposes PFAS remaining in syngas thermally at 1800°F
- Residence time at temperature is approximately 2 seconds

Emissions Control System (700°F)

- Emissions control system used as a final polishing step for flue gas
- Reduces criteria pollutants below minor source thresholds

PFAS Destruction

Aries Greenhouse Gas Reductions

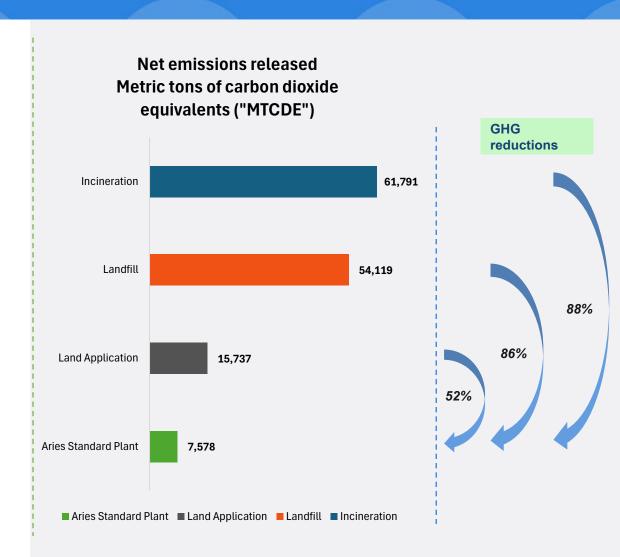
Lifecycle Analysis shows GHG reduction of up to 88% vs other disposal methods

Substantial GHG reduction

Aries's
disposal
option
minimizes
truck traffic
and
associated
emissions by
up to 88%
compared to
sending
biosolids to a
landfill, land
application, or
incineration

Stantec, a carbon accounting firm was engaged by Aries to quantify annual greenhouse gas emissions from an Aries facility

GHG inventories were produced in an excel-based calculator specifically focused on wastewater & solids management emissions


This analysis illustrates that Aries produces significantly less emissions than if biosolids were disposed by any other method

Analysis showed that Aries standard plant design has a GHG footprint:

88% less than a biosolids incineration plant of the same size

86% less than transportation and disposal of the same amount of biosolids in a landfill

52% less than drying the same amount of biosolids and land applying them as fertilizer

PFAS STUDY RESULTS

Barr Engineering Company

Third-party study lead

- Aries hired Barr as a third-party independent resource
- Study design included sampling of incoming biosolids, dryer condensate, biochar, APCD sorbent and stack emissions
- Barr followed EPA stack test method OTM-45 and Barr PFAS sampling protocols and SOPs
- Barr arranged to have the input and output process samples analyzed by Eurofins in Lancaster, PA and to have the stack samples analyzed by Eurofins in Knoxville, TN
- Barr conducted a thorough QA/QC review and data validation
- Barr conducted mass balance calculations
- Barr authored the study report

Barr Engineering Company

Stack Emissions Highlights

Parameter		Gasifier Stack										
Test Methods EPA 1-4, OTM 45 Test Date		Run Date		Run 2 Date			Run 3 Date					Detectio
Compound		Lb/hr	Flags	Lb/hr	Flags		Lb/hr	Flags	Average		Flags	n Limit
Perfluorobutanoic acid (PFBA)		4.1E-06	Н	3.6E-06	Н	<	1.8E-06	JΗ	<	3.1E-06	ΗJ	DLL
Perfluoropentanoic acid (PFPeA)		7.8E-06	Н	5.6E-06	Н		2.6E-06	Н		5.3E-06	Н	ADL
Perfluorohexanoic acid (PFHxA)		2.6E-05	ВН	2.1E-05	ВН		9.0E-06	ВНЈ		1.9E-05	ВНЈ	ADL
Perfluoroheptanoic acid (PFHpA)		3.3E-06	ВН	2.2E-06	ВН	Г	1.1E-06	JBH		2.2E-06	ВНЈ	ADL
Perfluorooctanoic acid (PFOA)		5.3E-06	HJx	5.0E-06	Нx		1.9E-06	HJx		4.1E-06	HJx	ADL
Perfluorononanoic acid (PFNA)		1.6E-06	HJx	1.2E-06	HJx	Г	5.1E-07	JHx		1.1E-06	HJx	ADL
Perfluorodecanoic acid (PFDA)		1.5E-06	HJ	1.5E-06	HJ		5.1E-07	Н		1.2E-06	HJ	ADL
Perfluoroundecanoic acid (PFUnA)	<	3.3E-07	JH	3.4E-07	HJ		1.1E-07	JΗ	<	2.6E-07	JΗ	DLL
Perfluorododecanoic acid (PFDoA)	<	1.7E-07	Н	2.2E-07	HJ		6.2E-08	JΗ	<	1.5E-07	HJ	DLL
Perfluoro-3-methoxypropanoic acid (PFMPA)	<	6.3E-08	Н	2.1E-07	JH	<	7.7E-08	ΗJ	<	1.2E-07	ΗJ	DLL

Note: " < " indicates one or more fractions contributing to the total results are below analytical minimum detection level (MDL)

Bold indicates result or sum of results includes fraction with mass above the analytical reporting limit (RL)

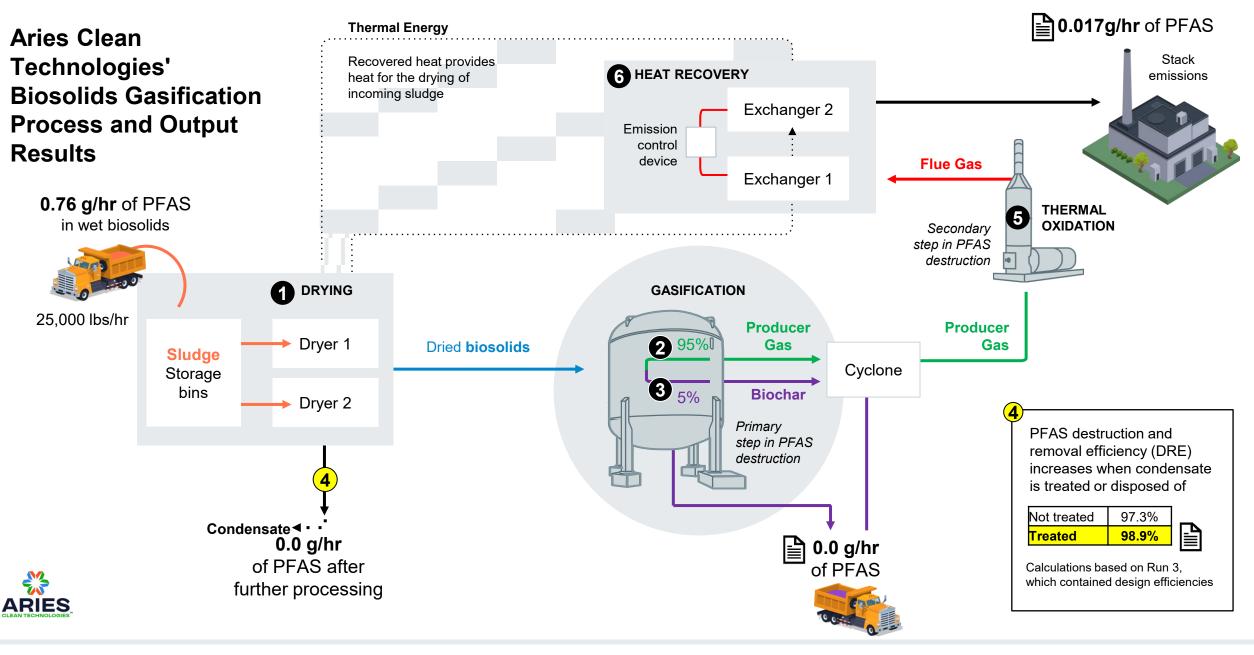
Detection Limit Flags

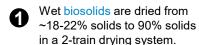
ADL = Above detection limit, where each fraction has detected amounts of a target compound (9.5.1 OTM-45)

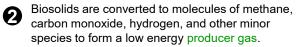
BDL = Below detection limit, where all fractions were at or below the detection limit for a target compound (9.5.2 OTM-45)

DLL = Detection limit limited, where at least one of the fractions is below detection limit and at least one fraction is above the detection limit (9.5.3 OTM-45)

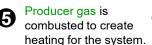
Barr Engineering Company Mass Balance Results




INPUT


ARIES CLEAN TECHNOLOGIES GASIFIER SYSTEM

OUTPUT



Approximately 5% of the total volume after gasification remains as biochar, which consists of elemental carbon and ash and are separated through the top of the gasifier and captured in a cyclone.

Heat exchangers recover thermal energy from gasification process.

Current Developments

Focus on evaluation of technologies to destroy or remove PFAS from air streams treating a variety of environmental media (gases, liquids and solids)

Barr has performed stack emission tests to evaluate the following technologies:

- Thermal oxidation
- Scrubbing/filtration
- Gasification/pyrolysis
- Plasma Arc
- Carbon filtration
- Municipal waste combustion
- Biosolids combustion
- Landfill gas combustion
- Subsurface thermal treatment
- SCWO (supercritical water oxidation)

