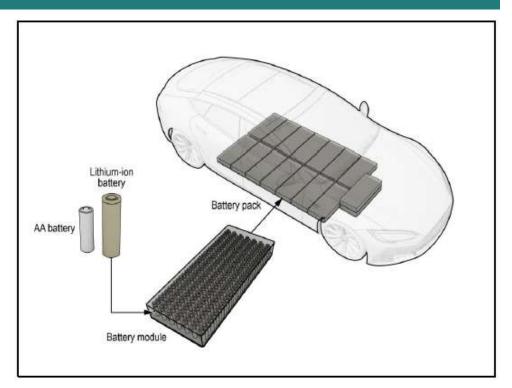
BATTERIES IN EVERYTHING!

MINIMIZING LEGAL RISKS RELATED TO LI-ION BATTERY HANDLING, RECYCLING, AND DISPOSAL

Midwest Environmental Compliance Conference September 24, 2024

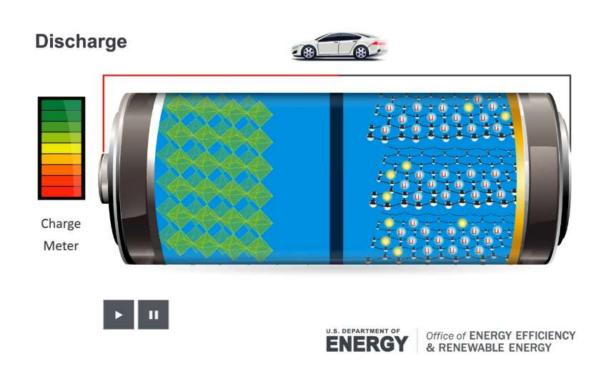
BRIEF HISTORY OF LI-ION BATTERY DEVELOPMENT

- Lithium was discovered as part of petalite ore in the early 1800s and isolated in 1821
- The oil crisis of the 1970s spurred development, including an attempt by Exxon to commercialize a form of Li-Ion battery in the mid-1970s
- Three scientists pioneered discoveries that are credited with creating the modern rechargeable Li-lon battery:
 - Stanley Whittingham, John B. Goodenough, Akira Yoshino
 - Awarded the Nobel Prize for Chemistry in 2019


Sony Corporation produced and sold the first rechargeable Li-Ion battery in 1991

LITHIUM-ION BATTERIES

- Rechargeable battery made of one or more cells
- "Battery" can refer to a cell, module, or pack
- Ubiquitous EVs, smartphones, consumer electronics



LITHIUM-ION BATTERIES

- Made up of anode (-), cathode (+), separator, electrolyte, and positive and negative current collectors
 - Anode typically graphite or similar carbon compound
 - Cathode typically lithium cobalt oxide
 - The liquid electrolyte carries charged lithium ions between the anode and cathode through the separator
 - Movement of the ions creates a charge

SAFETY & ENVIRONMENTAL ISSUES

Interrelated risks

- 1. Fires
- 2. Explosions/Thermal runaway
- Health and environmental impacts from fires and explosions
- 4. End of life recycling and disposal issues

Contributors

- 1. Internal short circuit that leads to heating and ignition
- 2. Flammable electrolyte
- 3. External damage

Common Causes

- 1. Overcharging
- 2. Extreme temperatures and physical damage

UL Standards & Engagement
Press Release — April 10, 2024

New Report Highlights Safety Risks of Lithium-Ion Batteries in Aviation

Passengers' lack of awareness resulting in increased risk — and incidents — on board

Where do passengers store their lithium-ion batteries?

Checked Luggage		
27%	E-Cigarette	
27%	Portable Charger	
15%	Laptop	
15%	Tablet	
3%	Smartphone	

DAMAGED, DEFECTIVE, RECALLED (DDR)

Swelling, relative to the same battery in its original state (Fig. 2)

Pictured: a swollen pouch cell battery, placed on top of an undamaged battery for comparison.

Damaged / Defective

- Acute hazards: gas, fire, visibly leaking electrolyte
- Swelling
- Discoloration of battery casing
- Smell
- Corrosion
- Loose or damaged wires
- Known conditions of use or misuse (i.e., water exposure)
- Pose a greater fire and thermal runaway risk

REGULATORY FRAMEWORK

US DOT

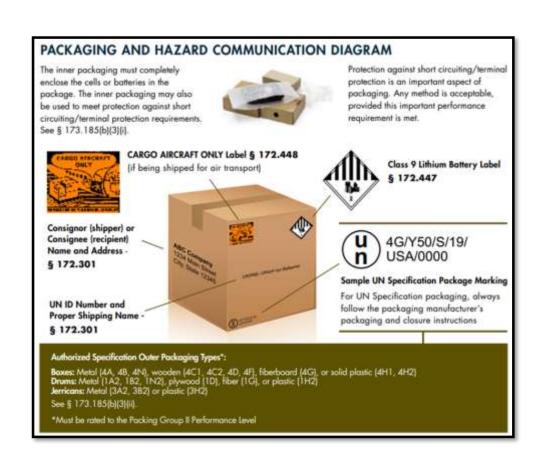
- Hazardous Materials Regulations
- 49 C.F.R. part 173

US EPA

- RCRA Hazardous Waste Regulations
- Universal Waste under 40 C.F.R. part 273

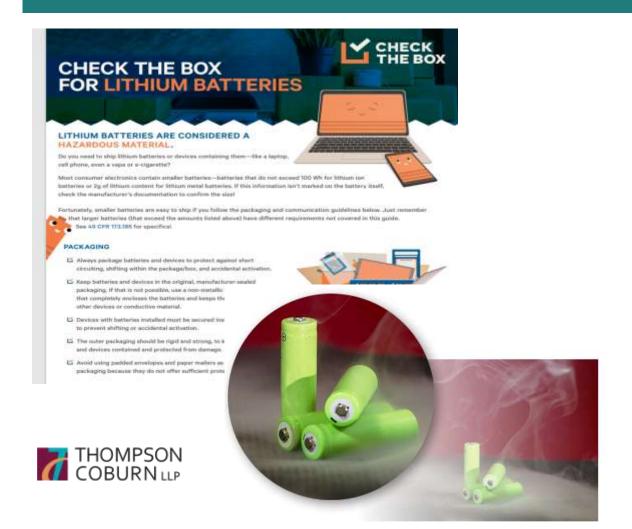
State Regulations and Initiatives

- State universal waste regulations
- Storage and Extended Producer Responsibility Laws ("EPR")



FEDERAL REGULATIONS – DOT HAZARDOUS MATERIALS REGULATIONS – 49 CFR PARTS 171-180

- Lithium cells and batteries §173.185
 - Packaged to prevent short circuits and damage:
 - Completely enclosed in non-metallic inner packaging
 - When enclosed in equipment, packaged to prevent accidental operation during transport
 - Exceptions for smaller cells (>20 Wh) and batteries (>100 Wh)
- Labeling requirements §172.447
- Hazmat employee training §172.704



FEDERAL REGULATIONS — DOT (CONT.)

- Limited exceptions to testing and packaging specification requirements if transported by motor vehicle for disposal or recycling – 49 CFR §173.185(d)
- Specific requirements if DDR –§173.185(f)
 - Cannot be transported by aircraft
 - Packaging:
 - Individual, non-metallic inner packaging that completely encloses the cell or battery
 - · Non-combustible, non-conductive, and absorbent cushioning material
 - Individually placed in appropriate outer packaging (Packing Group I performance level)
 - Marked with "damaged/defective lithium-ion battery"
 - No exceptions from training, marking, or labeling requirements

DOT CHECK THE BOX CAMPAIGN

- Are Lithium Batteries in your package? | US
 Department of Transportation
- Safety Advisory Notice for the Transportation of Lithium Batteries for Disposal or Recycling | PHMSA (dot.gov)
- Understanding the Risks of Damaged,
 Defective, or Recalled (DDR) Lithium Batteries |
 PHMSA (dot.gov)

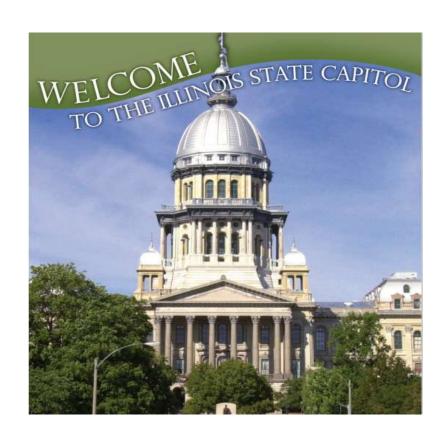
FEDERAL REGULATIONS - EPA

- Regulated at the end of life
- Most of the regulatory focus is on recycling, not disposal
- Recovery of critical minerals is paramount
 - aluminum, lithium, nickel, cobalt, manganese, and graphite
- No EPA regulation on reuse or repurposing
 - Not a waste

Source: U.S. Department of Energy Vehicle Technologies Office.

FEDERAL REGULATIONS - EPA

- Why are Li-lon batteries hazardous waste under RCRA?
 - Ignitable (D001)
 - Reactive (D003)
- Must be managed as hazardous wastes or universal wastes
- Best approach is to manage as universal waste under 40 C.F.R. Part 273
 - Streamlines requirements for generators and handlers
 - Does not apply if casing is breached, rendering battery DDR
 - Once a battery has arrived at a TSD facility or hazardous waste recycler, it stops being universal waste and becomes fully regulated hazardous waste


FEDERAL REGULATIONS – EPA, CONT.

- Managing Li-ion batteries as universal waste
 - Handlers may sort batteries by type, mix battery types in a single container, discharge batteries, regenerate used batteries, disassemble batteries or battery packs, remove batteries from products, or remove electrolyte from batteries (40 CFR §273.31, 273.33(2))
 - Any waste generated from these activities (including electrolyte) must be assessed for hazardous waste characteristics
 - Recycling activities can only be undertaken by permitted destination facilities
 - Transporting does not require manifesting under RCRA, but does trigger DOT requirements

STATE REGULATIONS – USED BATTERY STORAGE

- Illinois 2024 amendment to Environmental Protection Act
 - Battery storage sites at which 5,000 kg or more of used EV batteries are stored at any one time must:
 - Register with IEPA prior to February 2026
 - Maintain records documenting weight of volume of used batteries received, shipped away, and remaining at the site each week
 - Directs IEPA to propose and IPCB to adopt rules for battery storage sites, specifically end-of-life battery receipt, handling, storage, and transfer; standards for fire prevention; requirements for contingency planning and emergency response; recordkeeping, reporting

STATE REGULATIONS – EPR LAWS

- Extended Producer Responsibility (EPR) laws California, New York
 - Place recycling responsibility on manufacturers
 - Require battery producers to participate in stewardship programs for collection and recycling
 - CA EPR law (not yet in effect)
 - Battery producers must create or fund stewardship programs for collecting and recycling batteries no later than April 2027
 - Retailers must charge a fee at point of sale for products with embedded batteries beginning January 2026; fees will pay for state e-waste recycling program
 - Beginning July 2027, manufacturers must notify retailers of covered products and report estimated number of covered products sold during the previous year
- Iowa EPR law only applies to Ni-Cd and sealed lead batteries

LITIGATION LANDSCAPE

Improper Disposal

- Banks County Georgia v. SK Battery America, Inc., No. 24-cv-00138 (N.D. Ga.)
 - Suit by county alleging Li-ion battery manufacturer shipped mixed waste, including Li-ion batteries, to a facility not permitted to receive explosive waste, causing a large industrial fire
 - Remanded to state court Aug. 2024

Product Liability

- Altobelli, et al., v. General Motors LLC,
 No. 20-cv-13256 (E.D. Mich.)
 - Consolidated class action claiming that GM sold vehicles with defective batteries that caused fires and vehicle overheating
 - \$150 million settlement approved summer 2024

LITIGATION LANDSCAPE - ENFORCEMENT

EDUCATION ENERGY - ENVIRONMENT HEALTH CARE TRANSPORTATION POLITICS - JUSTICE ELECTION 2024

ENERGY - ENVIRONMENT | HEALTH CARE

R.I. Superior Court judge shuts down Providence scrapyard pending fire prevention review

Temporary restraining order comes on heels of second blaze in three months at Rhode Island Recycled Metals

BY: NANCY LAVIN - JULY 12, 2024 Sc15 PH

KEYS TO MINIMIZING LEGAL RISK

- Know the sources of Li-Ion batteries in your operation
- Consult DOT Resources before shipping
- Incorporate Li-Ion batteries into universale waste program (or start one for your batteries)
- Work with an experienced recycler
- Manage DDR batteries appropriately and with caution
- Update fire prevention and response plans to address Li-ion batteries
- Check your insurance

Ryan R. Kemper

Partner & Co-Chair Environmental Thompson Coburn LLP, One US Bank Plaza, St. Louis, Missouri 63101

rkemper@thompsoncoburn.com

314 552 6321 direct 314 602 6321 mobile

