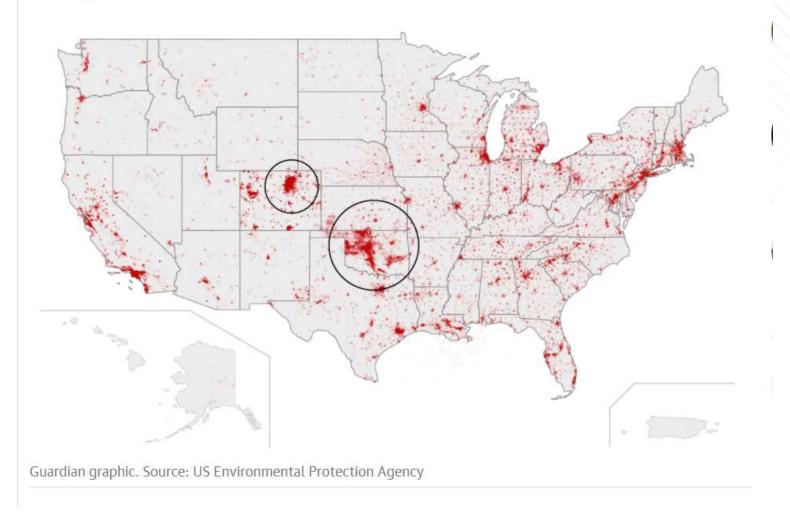
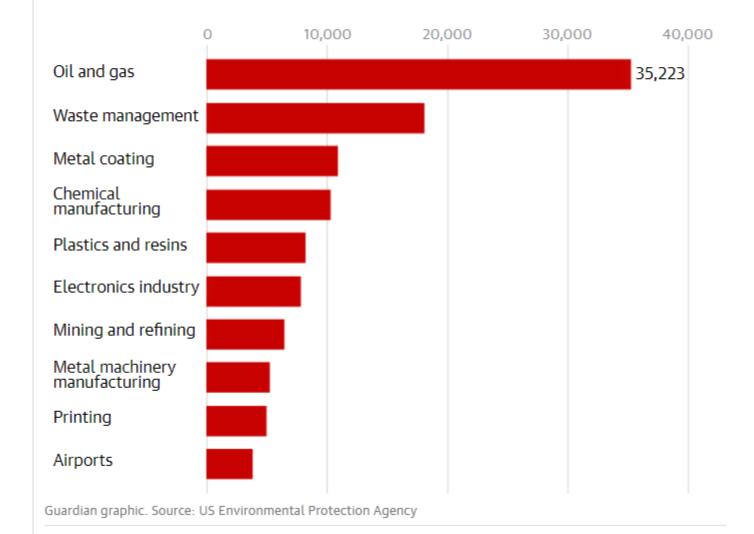
PFAS - The (Rapidly) Evolving Technical and

Legal Landscape

Brian Hoye, Burns & McDonnell Jessie Merrigan, Spencer Fane


October 26, 2021

Legal Landscape


The EPA identified more than 120,000 facilities that may expose people to PFAS

The biggest clusters of facilities are in Oklahoma and Colorado

Facilities potentially handling PFAS - top 10 industries

Facilities may be counted twice if they belong to multiple industries

SpencerFane

ø

Even More Data on the Way

- Expanded TRI Reporting
- TSCA Section 8 Reporting
- Nationwide Drinking Water Monitoring
- Multi-laboratory Validated Analytical Method for 40 PFAS
- Update PFAS Analytical Methods for Drinking Water
- Monitor Fish Tissue for PFAS

Effluent Guidelines and Risk Assessments

- Primary Drinking Water Regulation for PFOS and PFOA
- Effluent Limitation Guidelines for PFAS Discharge
- NPDES Permit Limits
- Water Quality Standards
- GenX, PFBS and other toxicity assessment and health advisories
- Risk Assessment for PFOA and PFOS in Biosolids

CERCLA Listing and Remediation

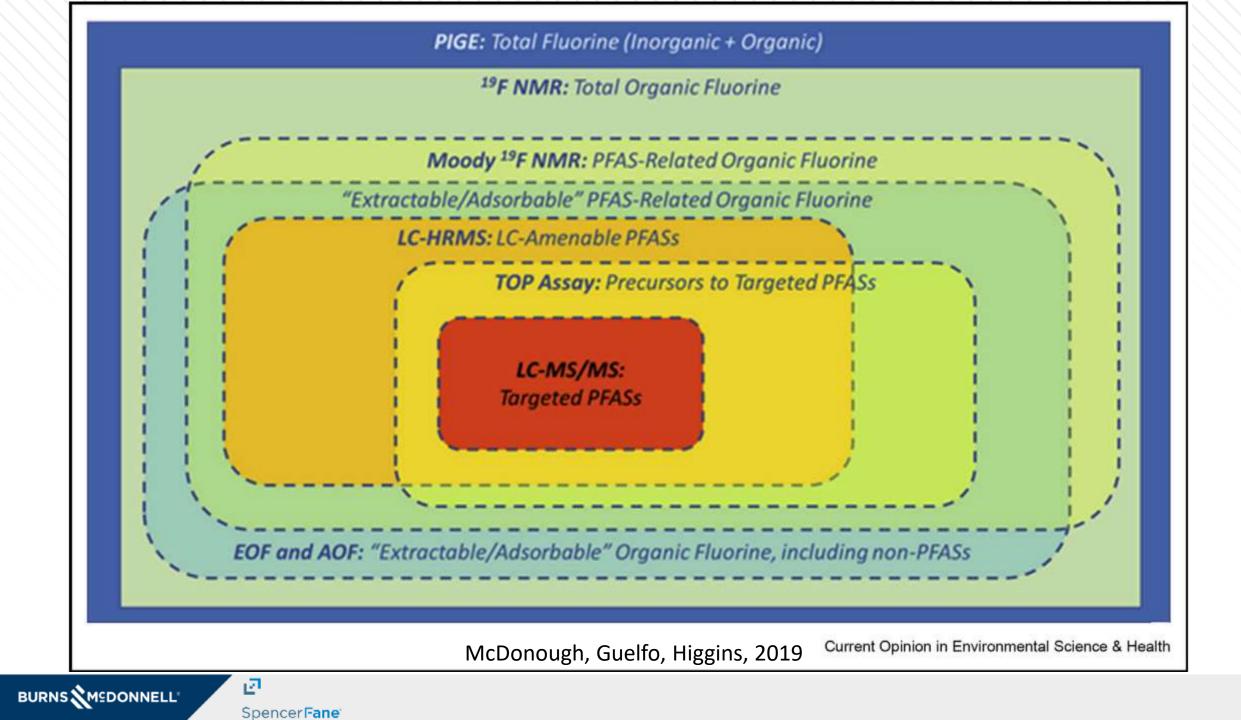
- Certain PFAS as CERCLA Hazardous Substances
- Consideration of Precursors as Hazardous Substances
- Guidance on Destruction and Disposal

Identification

Focus on Expanding Analytical Capabilities

Target Methods

- EPA Method 531.1 18 PFAS in Drinking Water
- EPA Method 533 29 PFAS in Drinking Water
- Modified Methods 75 PFAS
- Draft EPA Method 1633 40 PFAS in Waste Water, Surface Water, Groundwater, Soil, Biosolids, Sediment, Landfill Leachate, and Fish Tissue


Total oxidizable precursor (TOP) assay [ppt]

- Oxidation of precursors to detectible byproducts
- Commercially Available
- Estimates as high as 8,000 PFAS
- 241 commercially relevant PFAS (Buck et al., 2021, IEMA)
- Clear gap in analytical capabilities
- EPA commitment to update analytical methods (Fall 2024)
- Calls to manage PFAS as a class of chemicals

Total PFAS via Organofluorine Measurement

Extractable organic fluorine (EOF) / adsorbable organic fluorine (AOF) [ppt/ppb]

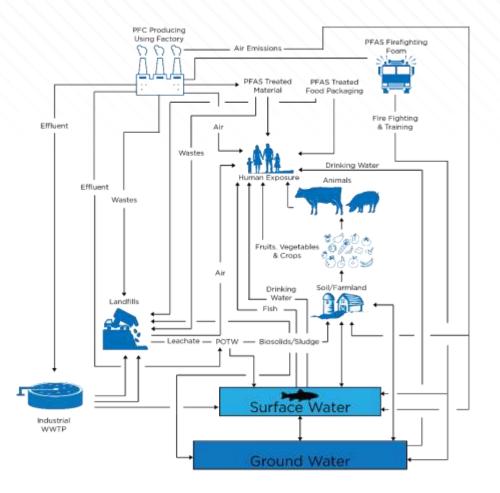
- Sample prepared to isolate organofluorine
- combustion ion chromatography (CIC) to mineralize and measure organic fluorine
- CIC does not differentiate between organic fluorine and fluoride, nor does it offer any structural details about the detected compounds.
- Commercially Available
- Particle-induced gamma ray emission (PIGE) [ppb]
 - Generally Nondestructive
 - Surface analysis technique for quantification of elemental fluorine
 - Beam of protons excites 19F nuclei, emits Gamma rays
 - Best suited for solid-phase samples.
 - Currently in R&D stage (SERDP/ESTCPER19-1142)
- Fluorine-19 nuclear magnetic resonance spectroscopy [ppb]

Applications of TOF methods

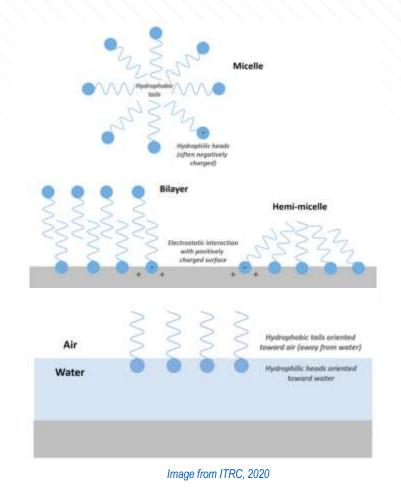
- Screening Methods
 - Presence or Absence of PFAS in products, wastes, etc.
- Remediation / Treatability
 - Closing mass balance
 - Performance monitoring
 - Influent / effluent mass balance
- Risk Management
 - Are there PFAS in this waste, soil, biosolids?
- Consumer Product Verification
 - Demonstration of "PFAS Free"

Non-Target Analysis - LC/MS-qTOF (quadrupole time of flight mass spectrometry)

- Higher Cost
- Comparison of peaks to library
- Quantitative results for hundreds of non-target PFAS
- Qualitatively identify many more PFAS
- More comprehensive understanding of sample than target-methods. But, some limitations in interpretation.
- When to use?
 - Forensic evaluations Is this my PFAS?
 - Due diligence Document conditions at the time of sale/purchase
 - Mass balance assessments


Investigation

An absorbation and


PFAS Characterization Challenges

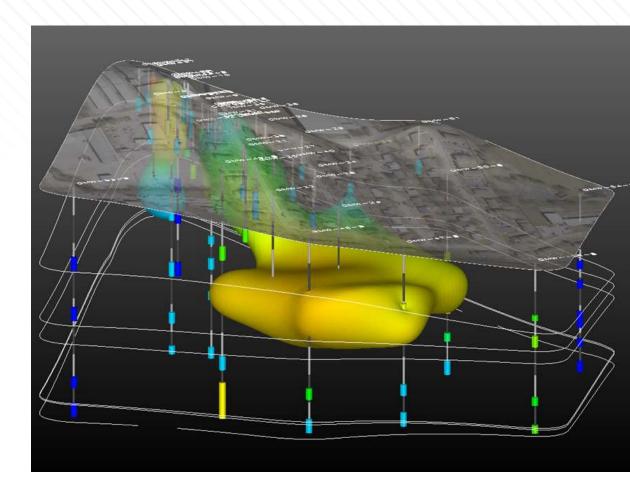
Complex Interactions/Transport Behavior

æ

SpencerFane

PFAS Characterization Challenges

Long Plumes


- Generally low but also variable (depending) on the PFAS chain length and class) adsorption affinity
- High solubility

BURNS MEDONNELL

- High recalcitrance (terminal PFAS are not biodegradable)
- Surfactant behavior (attracted to air-water interface)

177

Susceptibility to electrostatic forces (due to ionic form in solution)

Treatment

L. partie

Adsorption **Based Technologies**

- Activated Carbon (Granular, Powder, Colloidal)
- Ion Exchange Resin
- Others
 - Fluorosorb
 - RemBind
 - PQ-Osorb
 - Puraffinity
 - Biochar
 - Graphene
 - Zeolite

BURNS MEDONNELL

Pryolyzed Cellulose

Ø

Flocculation (PerfluorAd)

SpencerFane

Relative effectiveness is based upon influent chemistry / presence of co-contaminants

Competition for receptor sites

Selectivity of adsorption media

(e.g. – PFAS selective ions)

Compatibility of treatment media / technology with application (e.g. – certain resins are not compatible with DW)

Treatment Objectives – Which PFAS are targeted?

Potential to Regenerate

Vessel Size

Separation

- Reverse Osmosis
- Engineered Membranes
- Foam Fractionation

Pros

• Effective at removing wide rage of PFAS.

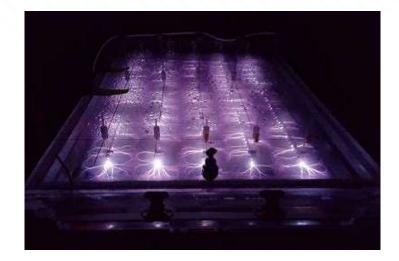
Cons

- Management of rejects / concentrates
- Maintenance

æ

Spencer Fane

Destruction


- Incineration
- Sonolysis
- Smoldering
- Electrochemical Oxidation
- Non-Thermal Plasma
- Super Critical Water Oxidation
- UV Radiation of Sulfite
- Chemical Oxidation
- Thermal Oxidation
- Chemical Reduction
- Photolysis

- Electron Beam
- Biological Enzymatic Defluorination

SpencerFane

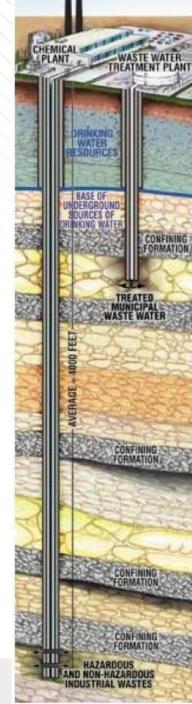
æ

Sequestration

Landfills

- Subtitle D
- Subtitle C
- Leachate Management

Class I disposal wells


- Considered suitable for PFAS-containing wastes
- Reduces risk of exposure to wastes
- Little potential for air emissions

177

SpencerFane

Goals in Managing / Disposing of PFAS-Containing Soil

Inherent risks associated with waste management

- Shorter Term Risks
 - Preventing spread of contamination
 - Dust / Runoff-control
 - Account for worker exposures
 - Transportation risks
 - Regulatory compliance
- Long Term Risks
 - Future Releases
 - Leachate to SW
 - Leachate to GW
 - Air Emissions
 - Transport to receptor

Future of PFAS Treatment

Strategies for concentration and destruction

Sorption / Separation (e.g. - Regenerable IX / Fractionation) → Destruction (e.g. - incineration / non-thermal plasma)

Need to overcome in-situ treatment challenges

- Current technologies limited to colloidal carbon
- Sorption / "PFAS Sink"
- Current focus / advancements in situ application of other proven ex situ technologies
- Need to destroy PFAS in situ

Need to demonstrate complete destruction – limited by analytical capabilities

