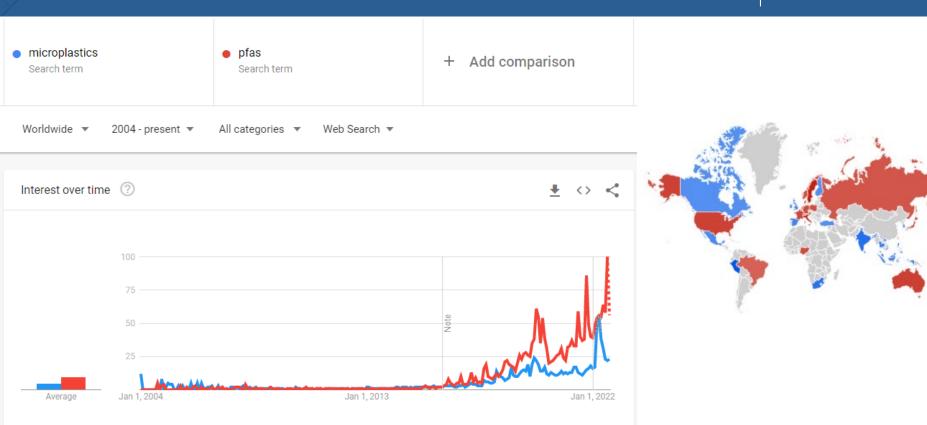


Understanding the Macro Problem that is Microplastics

Tina Liu MECC Kansas City | September 14, 2022

This morning, did you...?

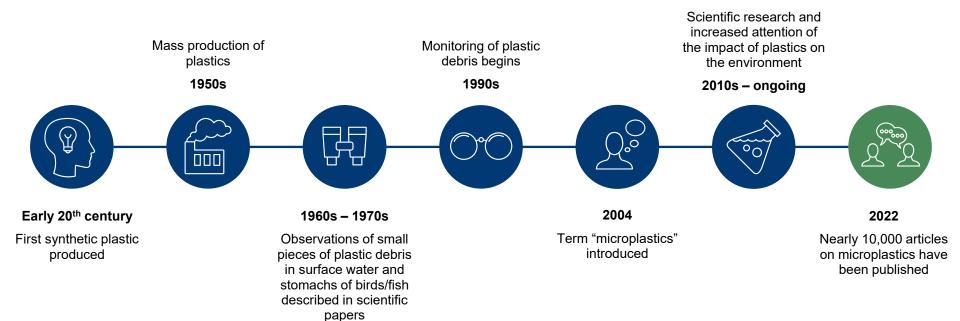


Microplastics are trending

Source: Google Trends

Agenda

Image Source: Quench Water



4

History of Plastics & Microplastics

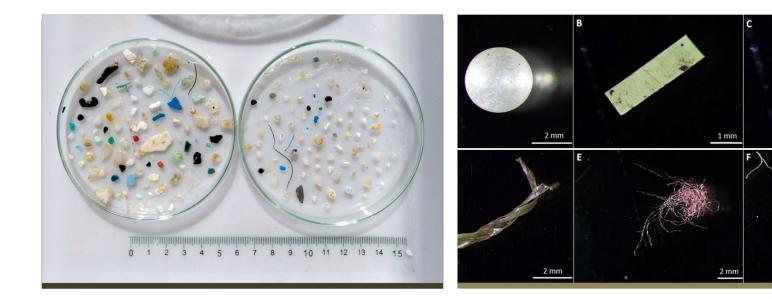
What are Microplastics?

films fibers spheres fragments nanoplastics pellets microplastics Small pieces of plastic that are less than 5 mm PET LDPE HDPE PS **PVC** PP

Chemical Characteristics

Polymer & Product Type

- Proprietary chemical "cocktail"
- Product purpose

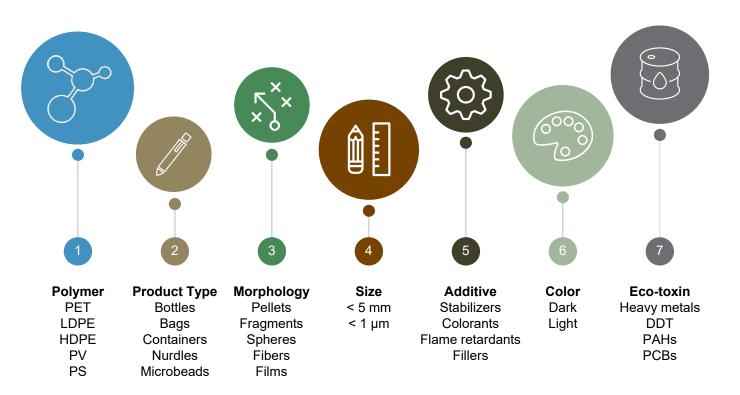

Additive & Eco-toxin

- Stabilizers, colorants, flame retardants, fillers, etc.
- Heavy metals, DDT, PAHs, PCBs, etc.

Physical Characteristics

Size

- Microplastics vs. nanoplastics
- What can we measure with current technology?


Morphology (Shape)

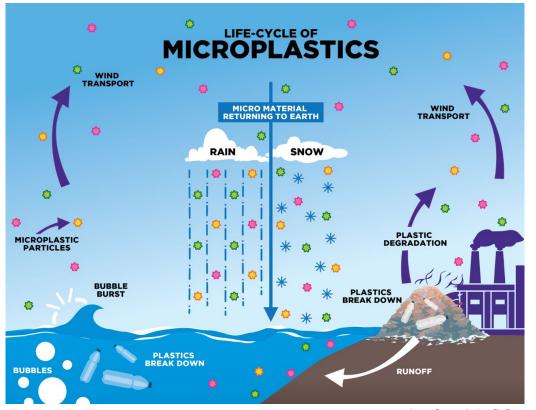
- Fragments, spheres, fibers, films, pellets, etc.
- Most of the existing data is for polystyrene spheres and virgin material

A Diverse Suite of Contaminants

Types of Microplastics

PRIMARY MICROPLASTICS

Small pieces of plastics that are purposely created by manufacturers to be smaller than 5 mm and enter the environment as such

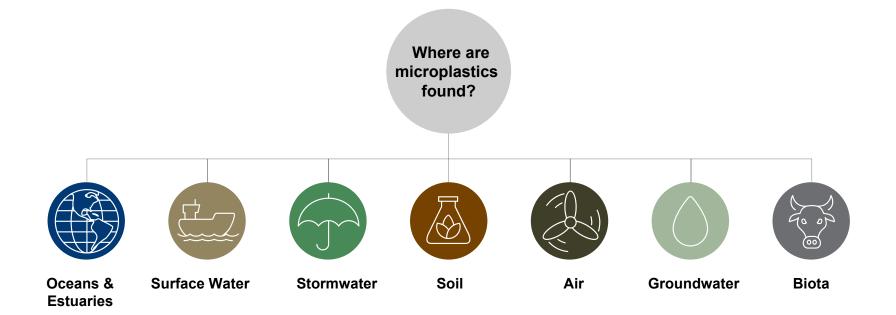


Plastic fragments derived from the breakdown of larger plastic debris due to natural degradation

Entry Points for Microplastics

Atmospheric Fallout or Precipitation

Direct Release

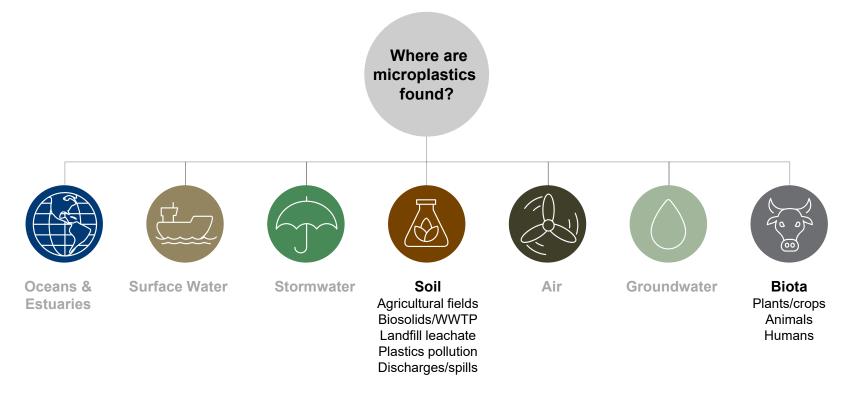

Stormwater

Landfill Leachate

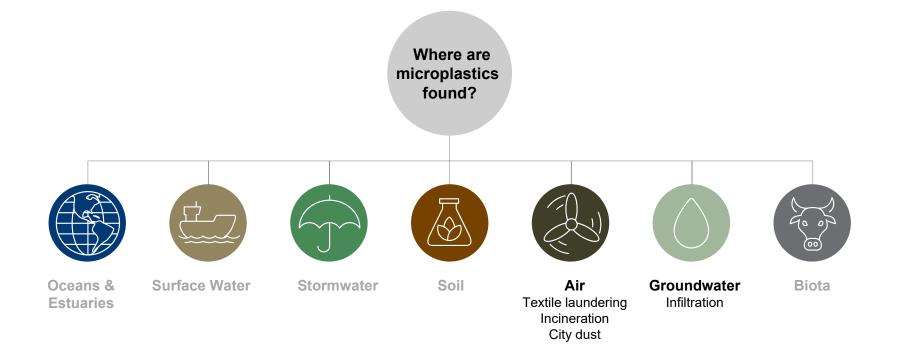
Wastewater & Biosolids

Image Source: Andrea Steffen

Geosyntec[▷]



Geosyntec[▷]


consultants

Discharges/spills

Geosyntec[▷]

Geosyntec[▷]

Toxicity & Risk Assessment

Ecological

Uptake, trophic transfer, dermal
Physical & chemical drivers
Toxicity studies focused on aquatic

Human Health

Risk Assessment

- No federal framework for human health and ecological risk assessments
- Academics propose potential frameworks
- Limited dose-response models for humans
- ToMEx database

Geosyntec[▷]

Toxicity & Risk Assessment

Ecological

Uptake, trophic transfer, dermal
 Physical & chemical drivers
 Toxicity studies focused on aquation

Human Health

Risk Ac

Assessment

Ingestion, inhalation, dermal
Physical & chemical drivers
Uptake, absorption, translocation
Limited studies

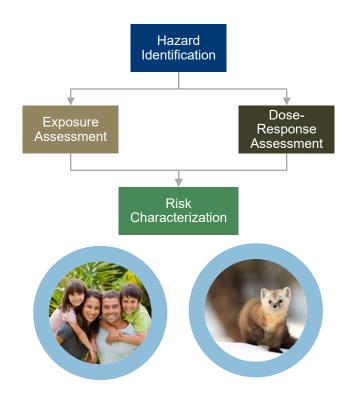
No federal framework for humar health and ecological risk assessments

- Academics propose potential frameworks
- Limited dose-response models for humans
- ToMEx database

Toxicity & Risk Assessment

Ecological -

Human Health


Risk Assessment Physical & chemical drivers
Toxicity studies focused on aquatic
Ingestion, inhalation, dermal

Physical & chemical drivers

Uptake, absorption, translocationLimited studies

 No federal framework for human health and ecological risk assessments

- Academics propose potential frameworks
- Limited dose-response models for humans
- ToMEx database

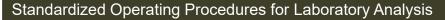
Toxicity Drivers

Size

Smaller particles = uptake, translocation Larger particles = block nutrient uptake in gut

×××

Shape


Fiber, fragment, sphere

Polymer Type

PVC and PS = more hazardous PE and PP = less hazardous

Microplastics Sampling & Analysis

- 2021: California introduced SOPs for infrared (FTIR) and Raman spectroscopy for analysis of microplastics in drinking water
- Interlaboratory study with 22 laboratories from 6 countries participated

Laboratory Accreditation Program

 2022: California Environmental Laboratory Accreditation Program (ELAP) adds world's first accreditation program for microplastics analysis

Sampling & Analysis Guidance Document

- 2022: California approved the world's first guidance on sampling and analytical protocols
- 2023 (pending): ITRC Microplastics Team currently creating a guidance document with a sampling and analysis chapter

Data

Quality

Geosyntec[>]

consultants

journal homepage: www.elsevier.com/locate/chemosphere

Monitoring microplastics in drinking water: An interlaboratory study to inform effective methods for quantifying and characterizing microplastics

Contents lists available at ScienceDirect

Chemosphere

Hannah De Frond^{a,*}, Leah Thornton Hampton^b, Syd Kotar^b, Kristine Gesulga^b, Cindy Matuch^b, Wenjian Lao^b, Stephen B. Weisberg^b, Charles S. Wong^b, Chelsea M. Rochman^{a,**}

20

The Next PFAS?

- 9,000+ compounds with unique characteristics (hydrophobic, hydrophilic)
- Soluble
- Novel approaches have been developed to assess risk and exposure
- Only a subset of compounds can be analyzed using current methods

- Diverse suite of contaminants
- Traditional fate and transport models inadequate
- Potential to bioaccumulate
- Persistent
- Ubiquitous nature requires specific procedures when sampling
- Risks to ecological and human health
- Implications for many industries

- Extreme diversity in polymer type, size, shape, etc.
- Insoluble
- Uncertainty on toxicity drivers (physical vs. chemical)
- Additives/other environmental chemicals may add another layer of complexity
- Lack of standardized analysis methods

PFAS

Both

Microplastics

Federal Regulatory Update

Microplastics

- 2015: Microbead-Free Waters Act
 - Prohibits addition of plastic microbeads in certain personal care products

Macroplastics

- 2020: Save Our Seas 2.0 Act
 - Aimed at reducing, removing, and preventing plastic waste in the environment
- Proposed 2021: Break Free from Plastic Pollution Act
 - Proposing amendments to the Solid Waste Disposal Act including reducing the production/use of certain single-use plastic products
 - o Proposing a microplastics pilot program
- Proposed 2021: Plastic Pellet Free Waters Act
 - Proposing that the EPA set limitations to pre-production pellet pollution

State Regulatory Update

California

- 2018: California Safe Drinking Water Act: Microplastics
 - ✓ Adopted first definition for microplastics in drinking water in 2020
 - ✓ Adopted standardized methods for testing microplastics in drinking water in 2021
 - ✓ Set up first accreditation program for microplastics analysis
 - ✓ Approved a policy handbook for testing microplastics in drinking water sources in 2022
 - ✓ Approved to test water supplies for microplastics over 4 years
 - Issue notification level to aid in results interpretation

- 2018: California Ocean Protection Council: Statewide Microplastics Strategy
 - ✓ Published Statewide Microplastics Strategy in 2022

Other States

- Bans on single-use bags, utensils, and containers in 9 states (California, Connecticut, Delaware, Hawaii, Maine, New Jersey, New York, Oregon, and Vermont)
- Regulations on microbeads in personal care products and storage and handling of plastic resin pellets/nurdles

International Regulatory Update

2018

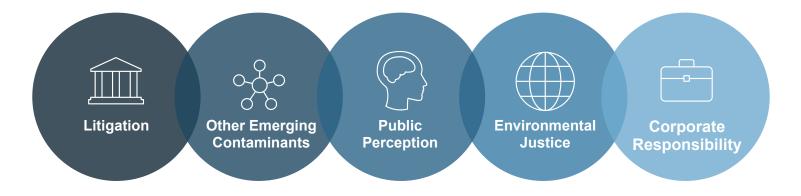
- Similar microbead bans in Canada, EU (Belgium, France, Ireland, Italy, Sweden), and UK
- 127 countries have adopted some form of legislation to regulate plastic bags

2019

- Basel Convention is modified to include plastic waste
- At the UN Environmental Assembly in Nairobi, 170 countries pledged to reduce use of plastics by 2030

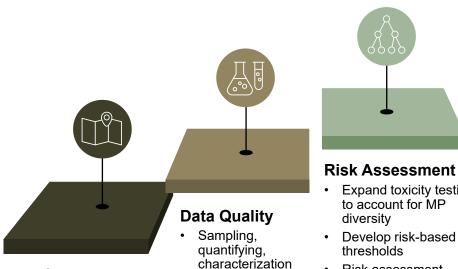
2021

 Canadian EPA adds plastic manufactured items added to the List of Toxic Substances


2022

- At the UN Environmental Assembly,175 countries agreed to develop a Global Plastics Treaty; have until 2024 to agree on elements of the treaty
- European Commission proposed law to ban intentionally added microplastics

Other Drivers



What's the tipping point?

Understanding Data Gaps & Challenges

QA/QC

Data reporting

•

•

Fate & Transport

- Background/ambient ٠ concentrations
- Terrestrial ٠ environments and other media

- Expand toxicity testing
- Develop risk-based
- Risk assessment • framework

Regulation & Compliance

- Comprehensive regulatory framework
- Where will we see compliance issues first?

Geosyntec[▷]

consultants

• Who is responsible?

26

Potential Compliance Issues

Where might we start seeing compliance issues for microplastics?

Stormwater Permitting

Best Management Practices Industrial & Municipal Wastewater

Pretreatment

Discharge requirements Biosolids Waste Management Landfills Leachate management Materials Recovery Facilities Food & Beverage Drinking water Bottled water Food processing & packaging Agriculture

Manufacturing

Industrial processes Spill prevention Product safety

Thank you!

Tina Liu (636) 812-0816 tliu@geosyntec.com St. Louis, Missouri

