

trinityconsultants.com

Using Human Health Risk Assessments in Regulatory Decision Making

Kansas City, MO + April 11, 2018

Dan Carney - Senior Consultant Arron Heinerikson - Regional Director

Outline

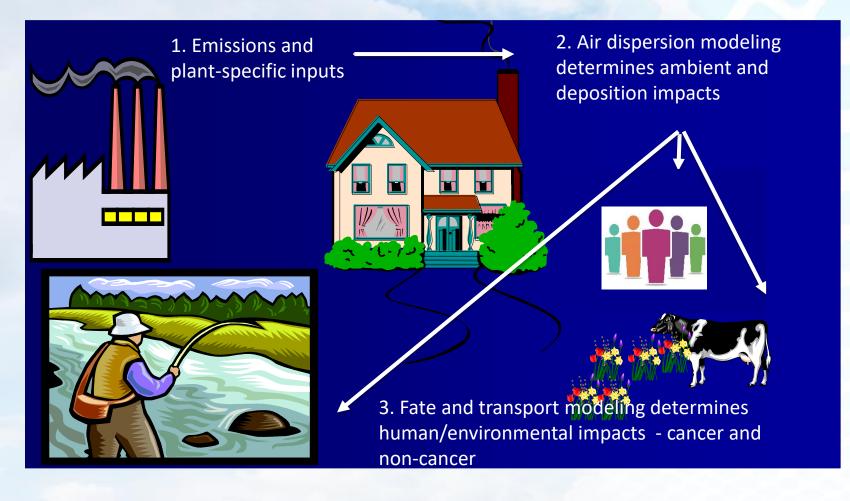
- > What is an HHRA?
 - Uses of term
 - Lessons learned over time
- > Different types of HHRA and their purpose
- > Case Studies
 - State Air Toxics
 - Combustion Risk Assessment
 - NESHAP RTR

What is an HHRA?

- > Human Health Risk Assessment ("HHRA") describes a fairly wide variety of regulatory topics such as:
 - State-specific risk evaluations related to air toxics emissions identified as part of new construction CAA permitting
 - Combustion risk assessments related to incineration or use of hazardous waste as fuel
 - MACT RTR (residual risk) evaluations for HAP emissions
- Key to HHRA development is clearly defining and right sizing its use for technical studies, and in decision making

Types of HHRAs

- > State air toxics part of state/local agency permit application review criteria
- > NESHAP Risk and Technology Review (RTR) part of EPA's periodic review criteria for regulated (MACT) source groups
- > Site remediation periodic checks of contaminant levels to quantify adequacy of cleanup



Types of HHRAs (cont.)

- > Combustion HHRA often used to support issuance of RCRA hazardous waste permit (or renewal) for hazardous waste combustion (HWC) facility
- > Combustion (non-waste) permitting can be used to support air permitting; similar to HWC combustion risk assessment, but scope of analysis is normally very narrow (i.e., mercury evaluation only)

Risk Assessment Process Overview

Case Study 1 State Air Toxics - Missouri

- > Construction permitting project with HAP PTE > Screening Model Action Levels (SMALs) requires site-specific ambient impact analysis
- > Modeled air concentrations are compared to Risk Assessment Levels (RALs)

10 CSR 10-6.060 Appendix J

Case Study 1 State Air Toxics - RALs

- > Ambient air concentrations that are not expected to produce adverse cancer and non-cancer health effects during a defined period of exposure
- Basis is animal toxicity studies, human clinical studies, and human epidemiology studies accounting for exposure to sensitive populations
 - e.g. elderly, pregnant women, children, and those with respiratory illnesses like asthma
- > Health-based levels developed, maintained, and reviewed by Missouri APCP
- > Similar to National Ambient Air Quality Standards
 - If max modeled concentrations exceed RAL, ambient impacts must be further reduced until potential air toxic concentrations are below RALs

Case Study 1 State Air Toxics - List of SMALs and RALs

Air Pollution Control Program Table of Hazardous Air Pollutants, Screening Model Action Levels, and Risk Assessment Levels

Chemical	CAS #	SMAL (tons/yr)	8-HR RAL (μg/m ³)	24-HR RAL (μg/m³)	Annual RAL (μg/m ³)	10× Annual RAL (μg/m ³)	Group ID	VOC	РМ	Synonyms
ACETALDEHYDE	75-07-0	9		2	0.5	5		Y	Ν	ACETIC ALDEHYDE, ALDEHYDE, ETHANAL, ETHYL ALDEHYDE
ACETAMIDE	60-35-5	1						Y	Ν	ACETIC ACID AMIDE, ETHANAMIDE
ACETONITRILE	75-05-8	4	933.33					Y	Ν	METHYL CYANIDE, ETHANENITRILE, CYANOMETHANE
ACETOPHENONE	98-86-2	1						Y	N	ACETYLBENZENE, METHYL PHENYL KETONE AND HYPNONE
ACETYLAMINOFLUORINE, [2-]	53-96-3	0.005					v	Y	Y	N-2-FLUORENYL ACETAMIDE, N-FLUOREN-2-YL ACETAMIDE, 2- ACETAMIDOFLUORENE
ACROLEIN	107-02-8	0.04		6.9	0.02			Y	N	ACRYLALDEHYDE, ACRYLIC ALDEHYDE, ALLYL ALDEHYDE, PROPENAL
ACRYLAMIDE	79-06-1	0.02	0.0533					Y	N	PROPENAMIDE, ACRYLIC AMIDE, ACRYLAMIDE MONOMER, ETHYLENECARBOXAMIDE
ACRYLIC ACID	79-10-7	0.6	80					Y	Ν	PROPENOIC ACID, ETHYLENE CARBOXYLIC ACID, VINYLFORMIC ACID
ACRYLONITRILE	107-13-1	0.3		0.4	0.01	0.1		Y	N	VINYL CYANCIDE, CYANOETHYLENE, PROPENE NITRILE, AN
ALLYL CHLORIDE	107-05-1	1	0.533					Y	N	1-CHLORO-2-PROPENE, 3-CHLOROPROPYLENE, CHLORALLYLENE, ALPHA-PROPYLENE
AMINOBIPHENYL, [4-]	92-67-1	1					v	Y	N	BIPHENYLINE, P-PHENYLANILINE, XENYLAMINE, 4- AMINODIPHENYL, 4-BIPHENYLAMINE
ANILINE	62-53-3	1		0.2	0.1	1		Y	N	AMINOBENZENE, PHENYLAMINE, ANILINE OIL, AMINOPHEN, ARYLAMINE
ANISIDINE, [ORTHO-]	90-04-0	1						Y	N	O-METHOXYANILINE
ANTHRACENE	120-12-7	0.01					v	Y	N	ANTHRACIN, GREEN OIL, PARANAPHTHALENE, TETRAOLIVE N2G

Case Study 1 State Air Toxics

- > Typical Process
 - Identify project HAP emission rates above SMALs
 - Determine receptors (locations to calculate concentrations)
 - Determine source/stack parameters
 - Conduct air modeling using EPA models (AERSCREEN or AERMOD) to determine HAP concentration (8-hr, 24-hr, annual average)
 - Compare modeled concentration to RAL
 - If above RAL, make changes
 - Evaluate RAL for possible update
 - Changes in emission rate via control equipment
 - Changes in source parameters

Case Study 1 State Air Toxics (cont)

- > Permitting new sources at existing plant
 - New source HAP emissions > SMALs
 - Screen modeling indicated RAL exceedances
 - Source parameter changes? Not feasible
 - Refined modeling analysis? Also have existing HAP emissions
 - Emissions controls for new sources? Lack of options for level needed
 - Limit emissions of new sources and verify through testing - only solution for this case

- > HHRAP Protocol submittal and agreement
 - Overall approach (guidance, assumptions)
 - Selection of receptors and exposure scenarios
 - Selection of constituents of concern and emissions data source(s)
- > Run air dispersion model
- > Run risk model & evaluate results
- > Verify regulatory limits are protective

- > Locations evaluated (receptors)
 - Residents
 - Recreational/Subsistence Fishers
 - Subsistence or high-end recreational fishers levels evaluated despite documentation of no such receptors
 - Farmers/Subsistence Farmers
 - beef, dairy
 - Home Gardeners
 - Sensitive receptors
 - nursing homes, schools, nursing infant

- > Results measured against:
 - ♦ Carcinogenic threshold ≤ 1 x 10⁻⁵
 - Non-carcinogen threshold HI/HQ < 0.25</p>
- Most constituents orders of magnitude below thresholds
- > Few constituents are near thresholds requiring further evaluations - referred to as "risk drivers"
- > Initial (screen) evaluation uses conservative defaults
 - Defaults refined to more site-specific if issues

- > HW incinerator RCRA-permitted
- > Atypical feed streams = Atypical COPCs
 - Up front research to define input parameters for air/risk models
- > Typical risk drivers are limiting factor Dioxin/furans, mercury

- > Cement plant using hazardous wastederived fuel (RCRA-permitted)
- > Multiple options for risk receptors
 - Up front preliminary analysis to define areas of concern
- Negotiate receptors for analysis with agency
 Typical risk drivers are limiting factor
 Dioxin/furans, mercury

Case Study 3 NESHAP RTR

- > Combined risk and technology
- > CAA Section 112(d)(6) requires periodic (8 year) review and MACT standard revision, if necessary
 - Developments in practices, processes and control technologies taken into account
- > CAA Section 112(f)(2) evaluates residual risks after MACT standards applied
- > Determines if current MACT does a good job of protection, or if additional controls needed

Case Study 3 NESHAP RTR (cont)

- > HHRA used to determine risk remaining after application of industry-specific MACT standards
- Similar to combustion HHRA but unique models used for industry-wide vs. sitespecific approach
- > EPA has conducted 44 thus far in accordance with CAA Section 112(f)

https://www3.epa.gov/airtoxics/rrisk/rtrpg.html

Case Study 3 NESHAP RTR Examples

- > Wool Fiberglass Area Source Rule RTR Review 2015
 - EPA evaluated actual Cr(VI) emissions from existing facilities and found current levels acceptable at 20-in-1 million.
 - One furnace emitted at a higher level. EPA evaluated hypothetical risk scenario - all furnaces emit at higher (not actual) level; 400-in-1 million risk.
 - EPA limited chromium from gas fired furnaces to prevent increased risk/provide ample margin of safety.
- > Portland Cement NESHAP RTR Review 2017
 - EPA found risks acceptable with ample margin of safety, no revisions standards proposed.

Dan Carney - Senior Consultant DCarney@trinityconsultants.com (815) 288-6261

Arron Heinerikson - Regional Director <u>AHeineri@trinityconsultants.com</u> (913) 894-4500

