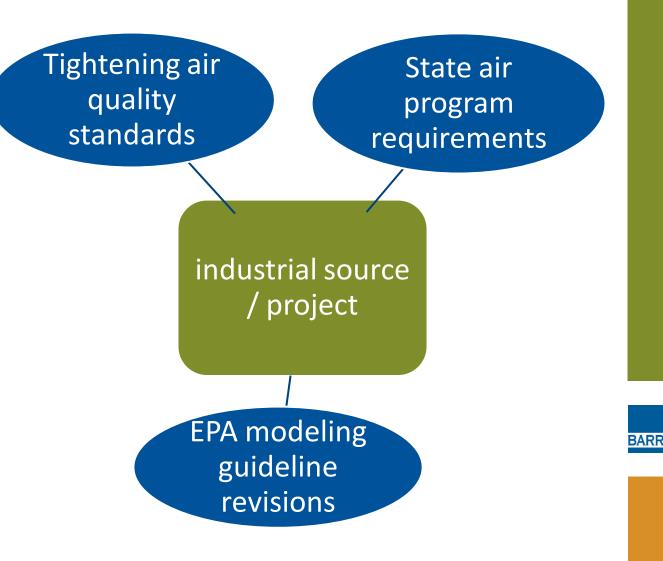
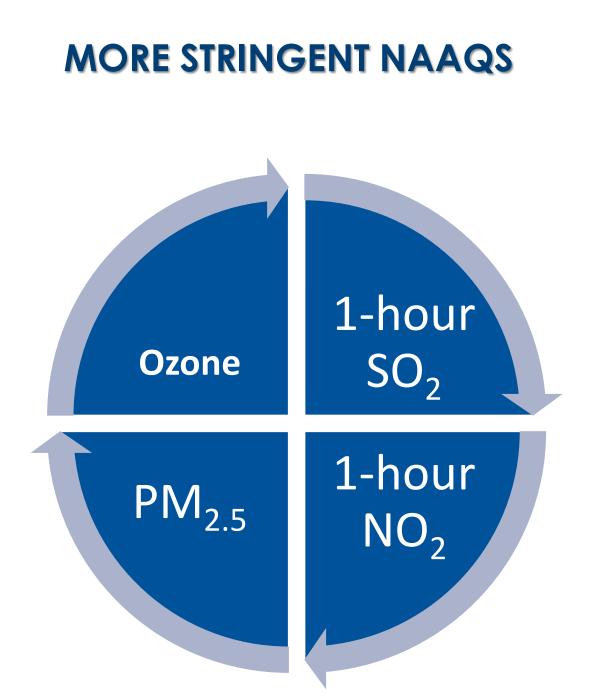
the use of dispersion modeling to enhance operational flexibility


November 3, 2016

Brian Leahy and Jeff Bennett

as air impact requirements evolve, what are the issues that I need to be aware of?



goal of this presentation

- Identify steps that a facility may take to ensure:
 - new or modified processes are afforded the utmost operational flexibility
 - a margin is left or a plan is developed for future changes (e.g., growth, more stringent standards)
- To accomplish this goal:
 - examine changes to air quality standards and modeling guideline
 - try to anticipate EPA's next moves and their potential impact on your facility's operations
 - review the current status of air impact requirements in your state
 - as part of <u>early</u> project planning,
 - determine critical path air quality issues for your project and
 - identify the best approach(es) within the modeling paradigm to find the most cost effective solution

if the thunder doesn't get you, then the lightening will

SO₂ implementation

June 2, 2010 – EPA establishes 1hour SO_2 NAAQS for the first time

− \leq 75 ppb (197 µg/m³)

- August 10, 2015 EPA finalizes the SO₂ Data Requirements Rule (DRR)
 - provided air agencies with flexibility to use <u>monitoring or modeling</u> to designate attainment

 SO_2 implementation (So, what does this mean for my plant/ company if I don't have SO_2 issues?)

- EPA has begun to use air quality modeling instead of monitoring for SO₂ for attainment designations
 - How long before modeling is used for other pollutants as well?

 Nonattainment = more evaluation (\$), more potential controls (\$\$), more scrutiny and oversight

PM_{2.5} implementation

- January 15, 2013 EPA reduces primary annual NAAQS - 15 μg/m³ to 12 μg/m³
- May 20, 2014: EPA issues "Guidance for PM_{2.5} Permit Modeling"
 - acknowledged limitations in modeling PM_{2.5}
 - secondary PM_{2.5} formation due to NO_x, SO₂, VOC, or ammonia emissions/reactions
 - states applying guidance to non-major sources
 - assessment requirements determined by direct PM_{2.5} and precursor emissions

 O_3 implementation

- December 28, 2015 EPA reduces primary 8-hour NAAQS from 0.075 ppm to 0.070 ppm
- Draft EPA modeling guideline provides "new" ways to include ozone air quality evaluations in permitting analyses

• Appendix W...

revisions to the Guideline on Air Quality Models

- July 29, 2015 EPA proposes revisions to its Guideline on Air Quality Models
 - updates to current EPA-preferred models
 - analytical techniques to address ozone and secondary PM_{2.5}

- Final Rulemaking expected November 2016
 - roll-out anticipated at Nov. 15 Regional, State, and Local Modelers' Workshop

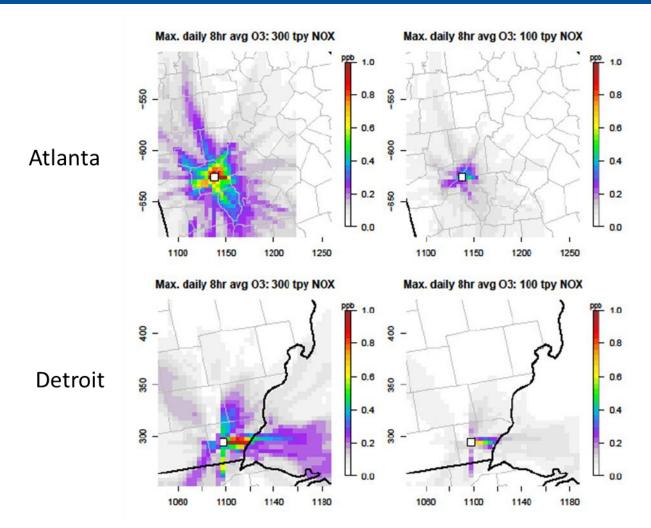
revisions to the Guideline on Air Quality Models (cont.)

- proposed technical enhancements to EPA's workhorse model (AERMOD)
 - updated Tier 2 and Tier 3 techniques for NO₂ modeling
 - updated algorithms to assess impacts during low wind conditions (adjusted u*)
- **Note:** these changes improve model accuracy and should be beneficial to regulated sources
 - AERMOD v16216 (coming shortly)
- long-range transport and visibility (CALPUFF yes/no?)
 - Our guess is that CALPUFF stays as there are no simple alternatives at this point; no confirmation

revisions to the Guideline on Air Quality Models (cont.)

- Ozone and PM_{2.5} modeling
 - Tiered approach:
 - Tier 1 National Model Emission Rates for Precursors (MERPs)
 - Tier 2 screening approach based upon "local" emission/impact relationships
 - Tier 3 photochemical modeling
 - new draft SILs for PM_{2.5} and ozone published by EPA in August 2016; will likely be used as part of above tiered approach
 - Ozone 1 ppb (8-hour)
 - PM2.5 1.2 μg/m³ (24-hour)

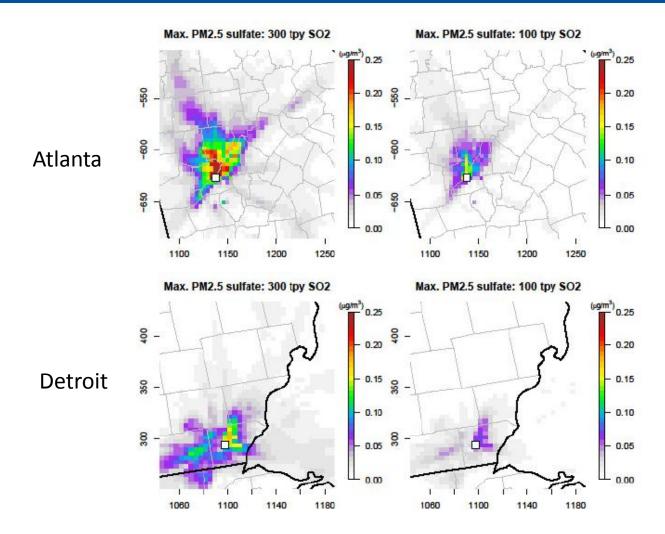
0.2 or 0.3 μ g/m³ (Annual)


What are the MERPs going to be?

- EPA has been in "lock down" mode prior to the Modeling Conference
- However, previous information can be used to obtain an idea about their approach

- Summary: Significant changes are on the horizon...
 - Interagency Workgroup on Air Quality Modeling Phase 3 Summary Report: Near-Field Single Source Secondary Impacts, July 2015

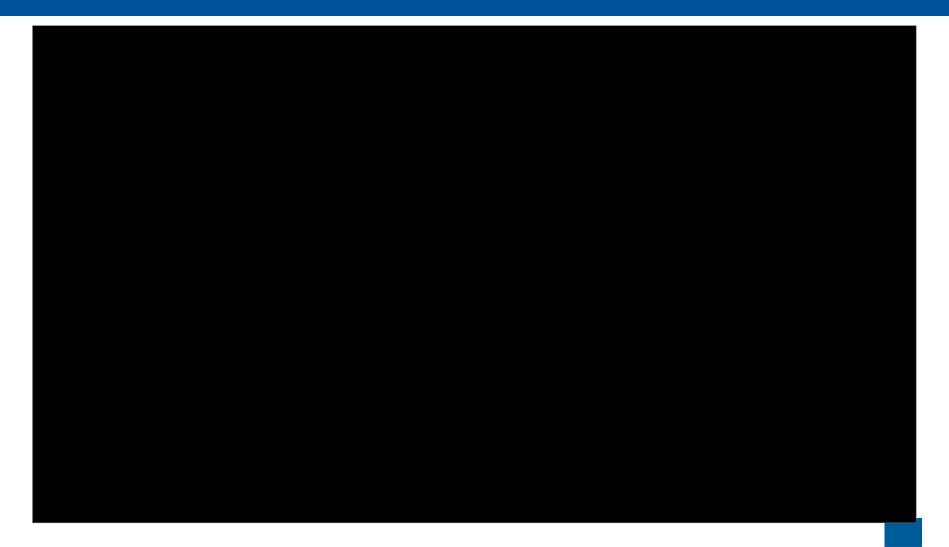
What are the MERPs going to be?



Page 18: Figure 5-4 <u>100</u> tons per year and <u>300</u> tons per year of NOx

8-hour ozone SIL 1.0 ppb

What are the MERPs going to be?



Page 16: Figure 5-1 <u>100</u> tons per year and <u>300</u> tons per year of SO2

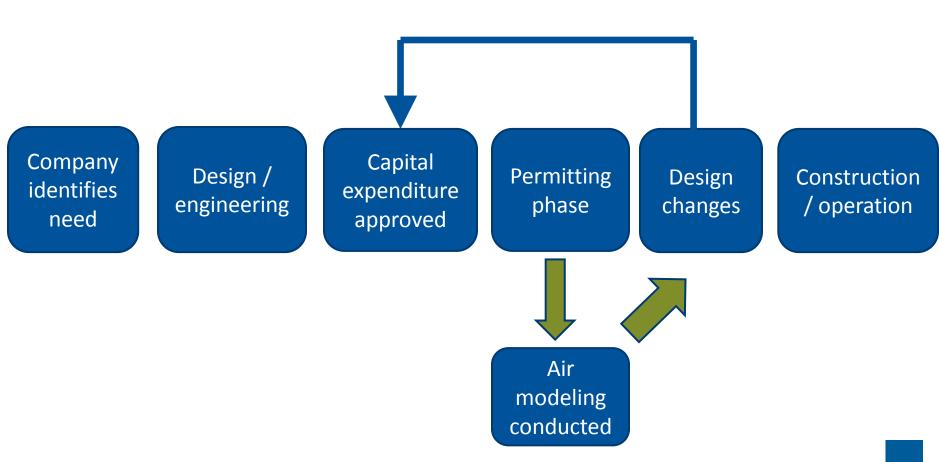
Annual PM_{2.5} SIL 0.2 or 0.3 ug/m³

Photochemical Modeling

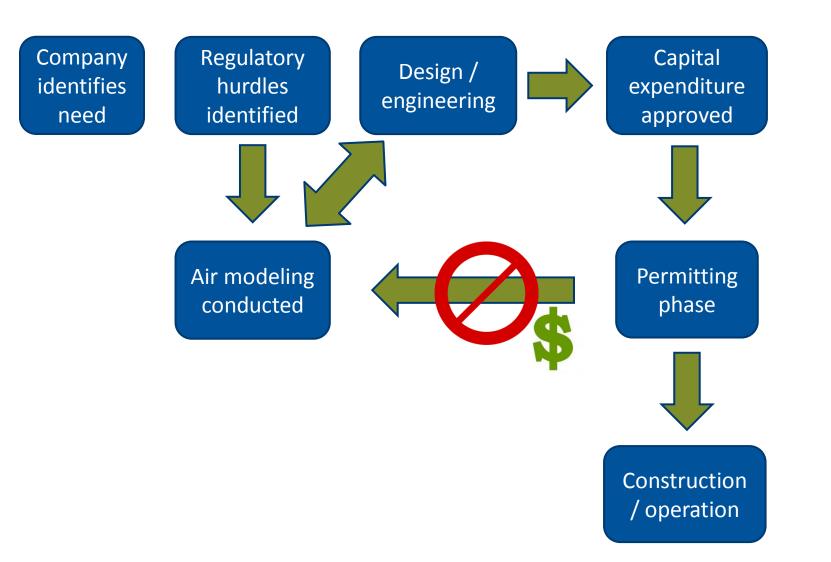
revisions to the Guideline on Air Quality Models (cont.)

- What do the Appendix W revisions mean to you?
 - modeling techniques becoming more refined (i.e., more complex)
 - EPA continues to provide general guidance, but says
 - "Agency decisions are based on case-by-case determinations"

- anticipate possible modeling for ozone (VOC/NO_X) and secondary $PM_{2.5}$ (SO₂/NO_X) using SILs


statespecific modeling guidance

- each Region 5 state has its own guidance for modeling minor sources of criteria pollutants and air toxics
- **example:** Michigan criteria pollutant program
 - March 3, 2015 MDEQ issues "Dispersion Modeling Guidance for Federally Regulated Pollutants"
 - focused on "allowable emissions"
 - new sources/mods excluded if <u>facility-wide</u> PTE < Significant Emission Rate (SER)
 - air impact demonstration required for minor changes to sources with <u>facility-wide</u> PTE > SER unless specified stack/building height criteria are met
- example: Ohio air toxic rules
 - include modeling requirements for new/modified sources of air toxic emissions along with specific air quality concentrations (<u>http://codes.ohio.gov/orc/3704</u>)
 - using "Review of New Sources of Air Toxic Emissions, Option A"



typical flow for new projects

BARR

recommended flow for new projects

BARR

tips for optimizing flexibility

- conduct preliminary modeling before committing to a set facility/process design
- identify the most important pollutants and any state-specific requirements
- use all the tools in the toolbox
 - project impacts stay below SILs
 - NO_x - NO_2 conversion techniques
 - meteorological datasets
 - background concentration reductions

tips for optimizing flexibility

- assess the potential impact of anticipated attainment designations (i.e., nearby is close enough)
- track background concentrations and identify "nearby sources" in your area to understand the circumstances you will face if you have to conduct a cumulative analysis

• <u>Bottom line</u>:

- understand your AQ situation before discussing your project with the permitting agency
- be prepared for a multi-step evaluation when you have a project that will require air quality analyses

thanks – don't forget to tip your modeler

any questions?

Jeff Bennett (573) 638-5033 (jbennett@barr.com) Brian Leahy (616) 512-7018 (bleahy@barr.com)

